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ABSTRACT

We present examples of using machine learning (ML) algorithms in the LSST data era. First, our models of
Inferring photometric redshifts for LSST galaxies handle biased training spectroscopic data with methods
finding out-of-distribution test data and measuring influence of training samples. Second, we also develop
a machine learning method of classifying galaxies morphologically in Hubble sequence, focusing on semi-
supervised approaches for the expected large number of unclassified LSST galaxies. Third, our research on
asteroid taxonomy uses both semi-supervised and unsupervised learning methods to fully understand
population of new asteroid taxonomy types hidden in the LSST big data on asteroids.
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A stream of ~108 time-domain events per night (Alerts), detected, in the LSST era (see Lee & Shin 2021)
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- — Morphological classification of galaxies —
5 1ol Fine-level morphological classification in terms of the Hubble sequence
s by using deformable attention transtormer (DAT) (Kang et al., ML4PS,
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learning (right) (Roh et al. 2022). o Use 11-dimensional high dynamic range image, which consists of nan-value mask per band.
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